021-8039 4921   132 6291 4921(微信同号
微信公众号:雅驰实业
5G时代的测试有何不同之处

5G核心测试包括:5G网络架构改变带来的测量技术创新、5G新空口技术测量、5G需求产生的新设备测量、新的应用测量、现场测试以及适合5G新技术的测试测量方法设计。

由5G网络架构的改变,而产生新的传输网络需要改变适配5G业务的需求。由此所带来的延时问题和同步问题是5G测试首要解决的问题。这对于测试测量设备来说,就需要高精度的测试精度(ns级)、要支持单向时延。需要在更多的网络测试,更复杂的网络维护下,同时也要保障精准的时间测量。

同时,为了避免大量传播损耗,5G需要采用波束成形子系统和天线阵列。测试新的波束成形IC需要采用 快速可靠的多端口测试方案。这些测试方案必须测试每条路径的信号增益和相位控制,以确保适当的信号细窄/尖锐程度(level tapering)和相位调整,从而减少旁瓣和正确控制波束的方向。

基于以上原因,使得5G测试方案开始朝着毫米波方向设计。因此,本振引入的系统相位噪音会成倍增加,甚可能占据主导地位,从而给组件测试带来了极大的挑战。测试仪器必须在FR1和FR2范围内均提供足够的动态范围,以分析和验证这两个5G频段内的组件性能是否一致。


但是,在实践的过程中,业界又遇到了新的难题——伴随着集成度的增加以及小型化的趋势,使得许多波束形成系统不再适用天线连接器。而是采用天线整合芯片(AoC)和封装天线(AiP)设备来实现毫米波频率下的波束成形,但这种设备没有可用的RF测试端口,迫使业界亟需寻找可以使用OTA辐射测试方法来进行设备特性分析的测试系统。

在射频测试中,OTA测试是指由测量天线接收然后再将信号传入测试仪表的方法。OTA测试一般为了避免空间干扰信号与多径,会在吸波暗室中进行。但是,由于在5G频率更容易受到环境条件影响而出现传播损耗,因此OTA测试的一致性可能更差。同时,由于传导耦合测试无法在没有离散连接点的情况下执行,因此将需要更频繁地进行OTA测试。