021-8039 4921   132 6291 4921(微信同号
微信公众号:雅驰实业
太赫兹技术

 相对于毫米波技术, 太赫兹技术的研究还处在探索阶段。太赫兹技术主要包括太赫兹波源、太赫兹传输和太赫兹检测等,其关键部件可以分为无源元件和有源器件. 无源元件包括太赫兹传输线、滤波器、耦合器、天线等, 而有源器件包括太赫兹混频器、倍频器、检波器、放大器、振荡器等。

太赫兹源

伴随着太赫兹波生成技术的发展, 太赫兹源的研究已有很多有价值的新进展. 研发低成本、高功率、室温稳定的太赫兹源是发展太赫兹技术的基础. 太赫兹源的分类多种多样, 按照产生机理, 可以分为基于光学效应和基于电子学的太赫兹源。按照源类型可以分成3 类: 非相干热辐射源、宽带太赫兹辐射源以及窄带太赫兹连续波源。

1.非相干热辐射源

非相干热辐射源在热平衡的情况下将热能转换为光能, 产生连续的光谱。 主要例子如日常生活中的太阳, 以及白炽灯. 由于其产生的太赫兹波功率很低, 应用前景较为局限.

2.宽带太赫兹辐射源

宽带太赫兹辐射源目前主要应用于光谱系统, 主要由周期为几十到几百个飞秒的脉冲产生,在频谱上包含高达几十太赫兹的超宽频谱分量. 产生方法包括:

a) 光导天线:光导天线进行太赫兹辐射的主要机理是光导天线在光脉冲的照射下产生载流子, 并在电场作用下加速运动, 在表面产生瞬态电流,进而辐射太赫兹电磁波,其特点是具有较高的输出能量. 近年来, 国内外开展了很多关于光导天线产生宽带太赫兹波的研究。

b) 光整流法: 光整流法是利用非线性的光整流效应, 使两个光束或者一个高强度的单色光束在介质中传播时产生差频或和频振荡,其特点是可以实现太赫兹超宽带输出, 但是输出能量相对不高. 基于此原理, 太赫兹辐射源得到了长足的发展。

c) 空气等离子法: 空气等离子法的原理是利用激光聚焦击穿空气产生太赫兹辐射。

d) 半导体表面: 基于半导体表面的太赫兹辐射源的基本工作原理可以总结成表面电场效应和光生丹培效应. 对于某些宽带隙的半导体材料, 其表面存在表面态, 由于表面和内部的费米能级不一致, 会形成表面电场. 在这个电场作用下, 被激光激发的载流子会形成瞬态电流, 从而形成太赫兹辐射. 对于某些窄带隙半导体材料, 由于其吸收系数很大, 大量的载流子会在半导体表面形成, 其中的电子和空穴在向半导体内扩散的时候使正负电荷在空间中分离, 形成光生丹培电场, 辐射太赫兹波. 这种方式的特点是简单易操作, 但辐射功率较低。

3.窄带太赫兹连续波源

窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波. 常用的方法包括:

a) 利用电子学器件设计振荡器, 尤其是以亚毫米波振荡器为基础, 提高振荡器的工作频率, 以设计实现适合太赫兹频段的振荡器. 由于这一特点, 目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是, 在此基础上利用倍频链已获得了1THz 左右甚至更高频率的太赫兹波。

b) 太赫兹量子级联激光器(THz-QCL) 作为相干光源的一种,是基于导带子带电子能态间跃迁和声子共振辅助隧穿实现粒子数反转. 随着量子级联激光器的迅速发展, 可以用来研究微小尺度的物质运动, 比如电子微观输运, 纳米光子学等。 同时由于其结构紧凑, 使之在很多领域具有很高的应用价值, 如天体物理和大气科学、空间通讯、精密光谱测量、安检领域和太赫兹成像等。

c) 自由电子激光器是将在磁场中运动的相对论电子束的动能转换为光子能量, 从而产生激光, 其特点是具有高能量和高相干性. 由于其连续性,辐射波长可以调谐到任何波长, 非常适合用作太赫兹辐射源, 但自由电子激光器的缺点是功耗高、体积大和费用昂贵, 因此自由电子激光器基本上用在实验室环境中。

d) 光泵太赫兹激光器: 太赫兹频段符合许多极性分子的转动能级, 光泵太赫兹激光器使这些极性分子的转动能级间的粒子数反转,从而产生太赫兹辐射. 国内外相关工作中, 常用的气体有CH3F 、NH3、D2O 、CH3OH 等。

e) 差频太赫兹辐射源: 差频太赫兹辐射源主要利用非线性晶体的差频效应来产生相干窄带的太赫兹辐射. 这种方法中, 需要两束不同波长的激光, 即频率不同, 以一定角度泵浦非线性晶体, 例如GaSe、ZnGeP2、GaAs、GaP、LiNbO3 以及有机晶体DAST 等. 太赫兹波的频率取决于泵浦光波长, 可以方便进行调谐。

f) 光参量法: 光参量法是利用一束泵浦光入射晶体, 激发出斯托克斯光和电磁耦子. 在泵浦光和斯托克斯光的共同作用下, 电磁耦子发生受激拉曼散射, 实现太赫兹辐射。